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An Inverse Scattering Technique for Microwave Imaging
of Binary Objects

Ioannis T. Rekanos and Theodoros D. Tsiboukis

Abstract—In this paper, an inverse scattering method for detecting the
location and estimating the shape of two-dimensional homogeneous scat-
terers is presented. It is assumed that the permittivity and conductivity of
the scatterer are given. Thus, the method concentrates on reconstructing
the domain occupied by the scatterer. The inversion is based on scattered
electric far-field measurements and is carried out by a combined finite-el-
ement–nonlinear optimization technique. The computational burden is re-
duced by use of the adjoint-state-vector methodology. Finally, the proposed
method is applied to both penetrable and impenetrable scatterers.

Index Terms—Finite-element methods, gradient methods, image recon-
struction, inverse scattering, microwave imaging.

I. INTRODUCTION

In most cases concerning electromagnetic inverse scattering, the ob-
jective is to reconstruct the distribution of the constitutive parameters
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of a specimen using scattered-field measurements. A specific type of
this problem consists in estimating the location and shape of a scatterer
that has known electromagnetic properties [1]–[3]. In this case, we deal
with a binary object reconstruction problem and our aim is to identify
the presence or the absence of the scatterer at specified subsections of
the domain under investigation. This approach is a very useful tool for
nondestructive testing applications [1] and is appropriate for applica-
tions where physical limitations do not allow explicit and quantitative
reconstruction [2], [3].

The purpose of this paper is to extend the inverse scattering method
proposed in [4] to the case of binary objects. As in its initial form,
the method combines the finite-element method (FEM) [5] and the
Polak–Ribière nonlinear-conjugate-gradient (NCG) optimization algo-
rithm [6]. Its objective is to minimize an error function that represents
the difference between the estimated and measured scattered electric
far field. The parameters that describe the scatterer are Boolean vari-
ables since they refer to its presence or absence. Hence, the error func-
tion has to be modified to a differentiable form in order to compute
its gradient. After an appropriate modification [1], the gradient is com-
puted by an FEM-based sensitivity-analysis scheme [7], which is en-
hanced by the adjoint-state-vector methodology (ASVM) [6]. In nu-
merical results, the proposed method is applied to the reconstruction
of penetrable and impenetrable scatterers, while the case of noisy mea-
surements is also examined.

II. DIRECT PROBLEM

We consider an infinitely long, isotropic, and nonmagnetic cylin-
drical scatterer of bounded cross-sectionS, which is uniform along
thez-axis. It is assumed that the scatterer has constant and known per-
mittivity "s and conductivity�s and is embedded in a homogeneous
medium("b, �b). For a given excitation frequency!, the scatterer is
represented by the complex permittivity contrast (CPC) given by

�(x; y) = "s � j
�s

!
"b � j

�b

!
� 1 u(x; y) = �su(x; y):

(1)

The functionu(x; y) is calledfunction of support, and is equal to one
or zero when the point(x; y) lies inside or outsideS, respectively. If
the scatterer is illuminated by a TM-polarized incident wave, then the
scattered electric field satisfies the scalar Helmholtz equation. As in
[4], we compute the field by applying the FEM, which results in the
sparse system of equations

S(u)E = b u; E
inc (2)

where the vectorsE andEinc represent the scattered and incident field
values at the nodes of the mesh. Both matricesS andb depend on
the binary vectoru = [u1 u2 � � � uM ]T , whereum is the constant
value ofu(x; y) inside themth element, andM is the total number of
elements. After the solution of (2), we calculate the scattered far field
by applying the Helmholtz–Kirchhoff integral theorem. In particular,
the calculation of the far field atK positions can be represented by the
matrix form

E
f = E

f
1
E
f
2

� � � E
f

K

T

= QE (3)

whereQ is a sparse matrix associated with the Green’s function and
its derivative.
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III. I NVERSION

The scatterer profile is reconstructed from scattered far-field
measurements taken around the scatterer domain. ForI inci-
dences andK measurement positions, we obtain a set of vectors
fi = [fi1 fi2 � � � fiK ]T , (1 � i � I), wherefik is the measurement
at the kth position for theith incidence. We then reconstruct the
scatterer profileu by minimizing the error function

F (u) = I�1
I

i=1

jfij
�2jfi �QE

i
j2 (4)

whereEi is the FEM solution for theith incidence. Sinceu is binary,
the error function (4) is not differentiable. To overcome this limita-
tion, we modify the function of support, i.e.,u[w(x; y)] = 1=f1 +
exp[�w(x; y)=�]g, where the positive parameter� controls the steep-
ness ofu [1]. Thus, themth element is occupied by the scatterer when
wm > 0. This modification allows us to minimize (4) by applying
the Polak–Ribière NCG algorithm. The computation of the gradient of
the error function with respect to the vectorw, (um = u(wm)) re-
quires the solution ofM systems of equations for each incidence. As
reported in [4], we can reduce the computation time by applying the
ASVM. Thus, for each incidence, we solve only the system

Sg
i
= �2QT (fi �QE

i
)�: (5)

The gradient ofF is then given by

@wF = I�1
I

i=1

jfij
�2Re @bi=@w � (@S=@w)Ei

T

gi : (6)

Furthermore, sinceS is the same for all incidences, we decompose it
once during each iteration by applying the Cholesky factorization.

The main advantage of applying the FEM to inverse scattering prob-
lems is that the resulting systems of equations are sparse. Consequently,
the time and storage demands are lower compared to the method of mo-
ments (MoM), which has been used in previous studies. In addition,
by applying the ASVM, the computational burden can be drastically
reduced. Moreover, the near-to-far-field transformation is also rapidly
achieved by a sparse-matrix multiplication. Another characteristic of
the FEM is that we can satisfy the continuity of the tangential compo-
nent of the field along the borders of the cells by using edge elements.
In our case, since the unknown field is TM polarized, the tangential
continuity is satisfied even by using nodal elements. On the contrary,
by applying the MoM, the tangential-field component along the borders
of cells is discontinuous. Apart from the different modeling approach
(FEM versus MoM), the presented method has another difference com-
pared to the modified-gradient technique [1]. Here, the direct scattering
problem is solved during each iteration, while in [1], it is not solved at
all. However, in the modified-gradient technique, the number of itera-
tions required to achieve reconstruction is much higher.

IV. NUMERICAL RESULTS

The proposed inverse-scattering method has been applied to the re-
construction of the location and shape of either penetrable and lossy
or impenetrable scatterers. It is assumed that the scatterer lies within
a known square domain of interest. Furthermore, we have thea priori
knowledge of the CPC value�s. In each application, synthetic mea-
surements, which are obtained by solving the direct-scattering problem,
are used. Actually, we have simulated the measurements by applying
the FEM. The fact that the FEM is also used for modeling the inverse
problem could lead to good reconstruction results, which are not rep-
resentative (known as “inverse crime”). For this reason, the mesh that
is used for simulating the measurements is different from the one used
during the inversion, and is actually more dense. Also, we examine

Fig. 1. Profile of a conducting scatterer. The original function of support.

Fig. 2. Reconstructed function of support of the conducting scatterer for� =

�j40.

the reliability of the method, by inverting noisy measurements. We
note that, in the following examples, the initial value of the function
of support is 0.05 (a selection almost equivalent to the absence of the
scatterer).

A. Impenetrable Scatterer

In the first example, a conducting scatterer of circular cross section,
which is embedded in free space, is considered (Fig. 1). Its diameter is
equal to�=3, where� is the wavelength of the excitation in free space.
The domain of interest, which contains the scatterer, is square of side
equal to�. First, the scatterer is illuminated by TM plane waves from 30
directions around the domain of interest. For each incidence, the scat-
tered electric far field is measured at 30 positions uniformly distributed
around the domain of interest on a circle of radius equal to8�. The do-
main of interest is divided into 24� 24 square subsections, while each
subsection is assumed to have constant CPC. Thus, the scatterer profile
is described by a vector that has 576 unknown components.

Before the inversion begins, the known value of the CPC has to
be set. As shown in [3], the value of�s should be set such that the
boundary of the scatterer is reconstructed with a thickness of two or
three times the mesh width. In this application, it is found that�s =

�j40 satisfies the above condition. After 16 iterations, there was no es-
sential further reduction of the error function. The reconstructed profile
is shown in Fig. 2. It is clear that both the location and boundary of the
scatterer have been successfully estimated. Furthermore, the interior of
the object has not been reconstructed. This is an expected result since
a conducting scatterer is indistinguishable from a conducting shell of
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Fig. 3. Reconstructed function of support of the conducting scatterer for� =

�j150.

Fig. 4. Profile of two distinct penetrable scatterers(� = 0:8 � j0:6). The
original function of support.

Fig. 5. Reconstructed function of support of the two distinct penetrable
scatterers based on noiseless measurements.

the same shape. If we set�s = �j150, the corresponding penetration
depth is less than the mesh width, resulting in a highly oscillatory func-
tion of support (Fig. 3).

B. Distinct Penetrable Lossy Scatterers

In the second example, we consider two lossy and homogeneous
scatterers of�=3 � �=3 square cross section each (Fig. 4). The CPC

Fig. 6. Reconstructed function of support of the two distinct penetrable
scatterers based on noisy measurements (SNR = 10 dB).

of both scatterers is�s = 0:8 � j0:6. The entire structure lies within
a� � � square domain divided into 24� 24 square subdivisions. As
in the first example, the scatterers are illuminated from 30 directions,
while 30 measurements are obtained for each incidence. The recon-
structed function of support, after 16 iterations, is illustrated in Fig. 5.
We notice that limited errors appear in the domain between the two
scatterers because of their interaction.

To examine the efficiency of the method in the presence of noise,
we apply it to noisy data. These data are generated by adding white
Gaussian noise of 10-dB signal-to-noise ratio to noiseless measure-
ments. As shown in Fig. 6, the reconstructed profile proves the applica-
bility of the method to the case of noisy data. This reliability could be
attributed to thea priori knowledge of the CPC value, which reduces
the dimension of the solution space and acts as a regularization scheme.

V. CONCLUSIONS

A spatial-domain inverse-scattering method has been presented for
the reconstruction of the location and shape of scatterers that have
known electromagnetic properties. By modifying the binary function
of scatterer support, we are able to use an optimization scheme com-
bining the FEM and Polak–Ribière NCG algorithm. The application
of the method to both penetrable and impenetrable scatterers was suc-
cessful, even in the presence of noisy measurements.
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