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TABLE | of a specimen using scattered-field measurements. A specific type of
FIELD LEVELS IN WR10AND WR90 this problem consists in estimating the location and shape of a scatterer
E(MV/m) | P(W) - WR10 that has known electromagnetic properties [1]-[3]. In this case, we deal
0.8 1.00E+03 with a binary object reconstruction problem and our aim is to identify
2.5 1.00E+04 the presence or the absence of the scatterer at specified subsections of
7.8 1.00E+05 the domain under investigation. This approach is a very useful tool for
24.7 1.00E+06 nondestructive testing applications [1] and is appropriate for applica-
tions where physical limitations do not allow explicit and quantitative
E(MV/m) | P(W) - WR90 reconstruction [2], [3].
0.9 1.00E+05 The purpose of this paper is to extend the inverse scattering method
2.8 1.00E~+06 proposed in [4] to the case of binary objects. As in its initial form,
288'91 }885:8; the meth_o_d combir_1es the fi_nite-elemen_t method (FEI_\/I)_ [5]_and the
: - Polak—Ribiere nonlinear-conjugate-gradient (NCG) optimization algo-
rithm [6]. Its objective is to minimize an error function that represents
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We consider an infinitely long, isotropic, and nonmagnetic cylin-
drical scatterer of bounded cross-secti®nwhich is uniform along
thez-axis. Itis assumed that the scatterer has constant and known per-
mittivity =5 and conductivitye, and is embedded in a homogeneous

An Inverse Scattering Technique for Microwave Imaging ~ medium(es, o). For a given excitation frequency, the scatterer is

of Binary Objects represented by the complex permittivity contrast (CPC) given by
loannis T. Rekanos and Theodoros D. Tsiboukis (2, y) = [(55 _ j%)/(eb _ j%> _ 1]u(a,7 ) = eulz, y).
@)

Abstract—In this paper, an inverse scattering method for detecting the

location and estimating the shape of two-dimensional homogeneous scat- . N . .
terers is presented. It is assumed that the permittivity and conductivity of The functionu(x, y) is calledfunction of supportand is equal to one

the scatterer are given. Thus, the method concentrates on reconstructing O Zero when the poirttz, y) lies inside or outsidé, respectively. If
the domain occupied by the scatterer. The inversion is based on scattered the scatterer is illuminated by a TM-polarized incident wave, then the
electric far-field measurements and is carried out by a combined finite-el- - scattered electric field satisfies the scalar Helmholtz equation. As in

ement-nonlinear optimization technique. The computational burden is re- : : ; ;
duced by use of the adjoint-state-vector methodology. Finally, the proposed [4], we compute the field by applying the FEM, which resuits in the

method is applied to both penetrable and impenetrable scatterers. sparse system of equations
Index Terms—Finite-element methods, gradient methods, image recon- .
struction, inverse scattering, microwave imaging. S(wE = b(u. Emc) )
|. INTRODUCTION where the vectorE andE™ represent the scattered and incident field

) o ) values at the nodes of the mesh. Both matri8esndb depend on
In most cases concerning electromagnetic inverse scattering, the g binary vectom = [u; us --- uas]”, whereu,, is the constant

jective is to reconstruct the distribution of the constitutive parametefg) e ofu(x, y) inside themth element, and/ is the total number of
elements. After the solution of (2), we calculate the scattered far field
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I1l. I NVERSION

The scatterer profile is reconstructed from scattered far-field
measurements taken around the scatterer domain. IFanci-
dences andi’ measurement positions, we obtain a set of vectors
f; = [fir fio -+ fix]", (1 < i < I), wherefi; is the measurement
at the kth position for theith incidence. We then reconstruct the

scatterer profilax by minimizing the error function 05
. .

Fu)=1""Y &7/t - QE,[” @)
=1

whereE; is the FEM solution for théth incidence. Sinca is binary,
the error function (4) is not differentiable. To overcome this limita-
tion, we modify the function of support, i.ejfw(z, y)] = 1/{1 +
exp[—w(z, y)/8]}, where the positive parametgcontrols the steep-
ness ofu [1]. Thus, thenth element is occupied by the scatterer whe
wy,, > 0. This modification allows us to minimize (4) by applying
the Polak—Ribiére NCG algorithm. The computation of the gradient of
the error function with respect to the vecwr, (v, = u(wn)) re-
quires the solution ofif systems of equations for each incidence. As
reported in [4], we can reduce the computation time by applying the
ASVM. Thus, for each incidence, we solve only the system

Sg; = —2Q" (i - QE,)". (5)
The gradient off’ is then given by

1

Eig. 1. Profile of a conducting scatterer. The original function of support.

T
dWwF=T"3" |fi|_2Re{ [abi/aw - (8S/SW)E;]Tgi}. (6)

Furthermore, sinc8 is the same for all incidences, we decompose it
once during each iteration by applying the Cholesky factorization.

The main advantage of applying the FEM to inverse scattering prob-
lems is that the resulting systems of equations are sparse. Consequently,
the time and storage demands are lower compared to the method of fi@-2. Reconstructed function of support of the conducting scattergr.fer
ments (MoM), which has been used in previous studies. In addition/4-
by applying the ASVM, the computational burden can be drastically

reduced. Moreover, the near-to-far-field transformation is also rapidye reliability of the method, by inverting noisy measurements. We
achieved by a sparse-matrix multiplication. Another characteristic gte that, in the following examples, the initial value of the function

the FEM is that we can satisfy the continuity of the tangential compgf support is 0.05 (a selection almost equivalent to the absence of the
nent of the field along the borders of the cells by using edge elemenygatterer).

In our case, since the unknown field is TM polarized, the tangential
continuity is satisfied even by using nodal elements. On the contrapy, |mpenetrable Scatterer
by applying the MoM, the tangential-field component along the borders

of cells is discontinuous. Apart from the different modeling approach I_n th_e first exampl_e, a conductm_g scattc_erer of C|r_cular cross sectlon_,
(FEM versus MoM), the presented method has another difference co\Ml-'Ch is embedded in free space, is considered (Fig. 1). Its diameter is
' ual toA/3, where\ is the wavelength of the excitation in free space.

pared to the modified-gradient technique [1]. Here, the direct scatterifi ; . . . . ;
e domain of interest, which contains the scatterer, is square of side

roblem is solved during each iteration, while in [1], it is not solved a{IE . L .
P 9 1] qualto\. First, the scatterer is illuminated by TM plane waves from 30

all. However, in the modified-gradient technique, the number of iterg: . . . L
tions required to achieve reconstruction is much higher. rections a.round. theldomaln of interest. F?T each |pC|dencg, the scat-
tered electric far field is measured at 30 positions uniformly distributed
around the domain of interest on a circle of radius equaMadrhe do-
main of interest is divided into 24 24 square subsections, while each
The proposed inverse-scattering method has been applied to thestdsection is assumed to have constant CPC. Thus, the scatterer profile
construction of the location and shape of either penetrable and logsylescribed by a vector that has 576 unknown components.
or impenetrable scatterers. It is assumed that the scatterer lies withiBefore the inversion begins, the known value of the CPC has to
a known square domain of interest. Furthermore, we hava th@ri  be set. As shown in [3], the value gf; should be set such that the
knowledge of the CPC valug;. In each application, synthetic mea-boundary of the scatterer is reconstructed with a thickness of two or
surements, which are obtained by solving the direct-scattering problehree times the mesh width. In this application, it is found that=
are used. Actually, we have simulated the measurements by applyingl0 satisfies the above condition. After 16 iterations, there was no es-
the FEM. The fact that the FEM is also used for modeling the inversential further reduction of the error function. The reconstructed profile
problem could lead to good reconstruction results, which are not répshown in Fig. 2. Itis clear that both the location and boundary of the
resentative (known as “inverse crime”). For this reason, the mesh tiattterer have been successfully estimated. Furthermore, the interior of
is used for simulating the measurements is different from the one ughd object has not been reconstructed. This is an expected result since
during the inversion, and is actually more dense. Also, we examiaeonducting scatterer is indistinguishable from a conducting shell of

1

IV. NUMERICAL RESULTS
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Fig. 3. Reconstructed function of support of the conducting scattergr.fer
—34150.

A
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Fig. 4. Profile of two distinct penetrable scatterégs = 0.8 — j0.6). The
original function of support.

1

Fig. 5. Reconstructed function of support of the two distinct penetrable 4]

scatterers based on noiseless measurements.

the same shape. If we set = —;150, the corresponding penetration
depthis less than the mesh width, resulting in a highly oscillatory func-

tion of support (Fig. 3).

B. Distinct Penetrable Lossy Scatterers

In the second example, we consider two lossy and homogeneoug
scatterers of/3 x \/3 square cross section each (Fig. 4). The CPC
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Fig. 6. Reconstructed function of support of the two distinct penetrable
scatterers based on noisy measurem&it& = 10 dB).

of both scatterers ig. = 0.8 — j0.6. The entire structure lies within

a\ x A square domain divided into 24 24 square subdivisions. As

in the first example, the scatterers are illuminated from 30 directions,
while 30 measurements are obtained for each incidence. The recon-
structed function of support, after 16 iterations, is illustrated in Fig. 5.
We notice that limited errors appear in the domain between the two
scatterers because of their interaction.

To examine the efficiency of the method in the presence of noise,
we apply it to noisy data. These data are generated by adding white
Gaussian noise of 10-dB signal-to-noise ratio to noiseless measure-
ments. As shown in Fig. 6, the reconstructed profile proves the applica-
bility of the method to the case of noisy data. This reliability could be
attributed to thea priori knowledge of the CPC value, which reduces
the dimension of the solution space and acts as a regularization scheme.

V. CONCLUSIONS

A spatial-domain inverse-scattering method has been presented for
the reconstruction of the location and shape of scatterers that have
known electromagnetic properties. By modifying the binary function
of scatterer support, we are able to use an optimization scheme com-
bining the FEM and Polak—Ribiére NCG algorithm. The application
of the method to both penetrable and impenetrable scatterers was suc-
cessful, even in the presence of noisy measurements.
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